login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228116
a(n) = A006879(n) - A228115(n).
6
1, 0, 0, 0, -3, -26, 200, 2154, 11484, 19600, -477397, -8219901, -91253055, -827443165, -6390673975, -40675147794, -175537475858, 224340865430, 16557635792557, 240512852610684, 2400398259375610, 16146663225893061, 5309635516930146, -2257043208658957597, -52738581235904454897
OFFSET
1,5
COMMENTS
Difference between the number of primes with n digits (A006879) and its estimate by squares of odd-indexed Fibonacci polynomials (A228115).
The sequence (A228115) provides exactly the values of pi(10^n)- pi(10^(n-1)) for n=2 to 4 and yields an average relative difference in absolute value, i.e. Average(Abs(A228116(n))/ (A006879(n)) = 1.01656…x10^-2 for 1<=n<=25, better than when using the ((10^n)/log(10^n)) function (Average(Abs(A228066(n))/ (A006879(n)) = 4.69094…x10^-2 (see A228066)), or the Logarithm integral (Li(10^n)-Li(2)) function (Average(Abs(A228068(n))/ (A006879(n)) = 1.75492…x10^-2 (see A228068)), or the Riemann(Riemann (10^n)) function (Average(Abs(A228114(n))/ (A006879(n)) = 1.03936…x10^-2) for 1<=n<=25.
Furthermore, if the first value for n=1 is skipped, the average relative difference in absolute value is improved by nearly two orders of magnitude, i.e. Average(Abs(A228116(n))/ (A006879(n)) = 1.72564…x10^-4 for 2<=n<=25, better than when using the ((10^n)/log(10^n)) function (Average(Abs(A228066(n))/ (A006879(n)) = 4.88640…x10^-2 (see A228066)), or the Logarithm integral (Li(10^n)-Li(2)) function (Average(Abs(A228068(n))/ (A006879(n)) = 7.86383…x10^-3 (see A228068)), or the Riemann(Riemann (10^n)) function (Average(Abs(A228114(n))/ (A006879(n)) = 4.10042…x10^-4), or the product of x and Fibonacci polynomials of multiple of 4 indices F[4n](x) (Average(Abs(A228064(n))/ (A006879(n)) = 3.90981…x10^-3 (see A228112)) for 2<=n<=25.
LINKS
Eric Weisstein's World of Mathematics, Fibonacci Polynomial.
Eric Weisstein's World of Mathematics, Prime Counting Function.
FORMULA
a(n) = A006879(n) - A228115(n).
KEYWORD
sign,less,base
AUTHOR
Vladimir Pletser, Aug 10 2013
STATUS
approved