OFFSET
0,3
COMMENTS
Stirling transform of A007841.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..420
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Stirling Transform
FORMULA
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (exp(x) - 1)^(j*k)/(k*j^k)).
a(n) = Sum_{k=0..n} Stirling2(n,k)*A007841(k).
a(n) ~ c * n! * n / log(2)^n, where c = exp(-gamma) / (4*log(2)^2) = 0.29215... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(combinat[multinomial](n, n-i*j, i$j)*
b(n-i*j, i-1)*(i-1)!^j, j=0..n/i)))
end:
a:= n-> add(Stirling2(n, j)*b(j$2), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
MATHEMATICA
nmax = 21; CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(Exp[x] - 1)^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, #^(1 - k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 21}]
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Ilya Gutkovskiy, Jun 15 2018
STATUS
approved