login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integer nearest to (S(n)*F(4n)(S(n))), where F(4n)(x) are Fibonacci polynomials of multiple of 4 indices (4n) and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments).
6

%I #15 Dec 11 2019 09:50:11

%S 4,21,143,1063,8385,68929,584467,5074924,44885325,402777151,

%T 3656032622,33492393634,309106153431,2870123507479,26783122426197,

%U 250971797533095,2359952229466124,22256979400698116,210440626023838163,1994088284872617955,18931694933036811169

%N Integer nearest to (S(n)*F(4n)(S(n))), where F(4n)(x) are Fibonacci polynomials of multiple of 4 indices (4n) and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments).

%C Coefficients are A=16103485019141/2900449771918928, B=5262046568827901/29305205016290, C(0)=296261685121849/265642652464758, C(1)=38398556529727/750568780742436, C(2)=0, C(3)=-11594434149768/8254020049890781.

%C This sequence gives a good approximation of the number of primes with n digits (A006879); see (A228112).

%C As the squares of odd-indexed Fibonacci numbers F(2n+1)(1) (see A227693) are equal or close to the first values of pi(10^n) (A006880), and as F(4n)(1)=(F(2n+1)(1))^2- (F(2n-1)(1))^2, it is legitimate to ask whether the first values of the differences pi(10^n)- pi(10^(n-1)) (A006879) are also close or equal to multiple of 4 index Fibonacci numbers F(4n)(1); e.g., for n=2, F(8)(1)=21. However, when using Fibonacci polynomials, the exact relation is xF(4n)(x)=(F(2n+1)(x))^2- (F(2n-1)(x))^2.

%C To obtain this sequence, one switches to the product of x and multiple of 4 index Fibonacci polynomials F(4n)(x), and one obtains the sequence a(n) by computing x as a function of n such that (xF(4n)(x)) fit the values of pi(10^n)- pi(10^(n-1)) for 1 <= n <= 25, with pi(1)=0.

%D John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

%H Vladimir Pletser, <a href="/A228111/b228111.txt">Table of n, a(n) for n = 1..500</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciPolynomial.html">Fibonacci Polynomial.</a>

%F a(n) = round(S(n)*F(4n)(S(n))), where S(n)=Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i)).

%e For n=1, xF(4)(x) = x^2*(x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+1))))^i)= 1.11173... to obtain a(1) = round((1.11173...)*F(4)(1.11173...)) = 4.

%e For n=2, xF(8)(x) = x^2*(x^2+2)*(x^4+4*x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+4))))^i)= 0.99998788... to obtain a(2) = round((0.99998788...)*F(8)(0.99998788...)) = 21.

%p with(combinat):A:=16103485019141/2900449771918928: B:=5262046568827901/29305205016290: C(0):=296261685121849/265642652464758: C(1):=38398556529727/750568780742436: C(2):=0: C(3):=-11594434149768/8254020049890781: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^i, i=0..3): seq(round(c(n)*fibonacci(4*n, c(n))), n=1..25);

%Y Cf. A006879, A228112, A228113, A228114, A228115, A228116.

%K nonn

%O 1,1

%A _Vladimir Pletser_, Aug 10 2013