login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233247
Expansion of ( 1-x^3-x^2 ) / ( (x^3-x^2-1)*(x^3+2*x^2+x-1) ).
2
1, 1, 1, 4, 9, 16, 36, 81, 169, 361, 784, 1681, 3600, 7744, 16641, 35721, 76729, 164836, 354025, 760384, 1633284, 3508129, 7535025, 16184529, 34762816, 74666881, 160376896, 344473600, 739894401, 1589218225, 3413480625, 7331811876, 15747991081, 33825095056
OFFSET
0,4
COMMENTS
a(n) is the number of tilings of a 3 X 2 X n room with bricks of 1 X 1 X 3 shape (and in that respect a generalization of A028447 which fills 3 X 2 X n rooms with bricks of 1 X 1 X 2 shape).
The inverse INVERT transform is 1, 0, 3, 2, 2, 4, 4, 6, 8, 10, .. , continued as in A068924.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) with half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2;3)-combs. A (w,g;m)-comb is a tile composed of m pieces of dimensions w X 1 separated horizontally by gaps of width g. - Michael A. Allen, Sep 24 2024
FORMULA
a(n) = A000930(n)^2.
a(n) = a(n-1) + a(n-3) + 2*Sum_{r=3..n} ( A000931(r+2)*a(n-r) ). - Michael A. Allen, Sep 24 2024
MAPLE
A233247 := proc(n)
A000930(n)^2 ;
end proc:
# second Maple program:
a:= n-> (<<0|1|0>, <0|0|1>, <1|0|1>>^n)[3, 3]^2:
seq(a(n), n=0..40); # Alois P. Heinz, Dec 06 2013
MATHEMATICA
Table[Sum[Binomial[n-2i, i], {i, 0, n/3}]^2, {n, 0, 50}] (* Wesley Ivan Hurt, Dec 06 2013 *)
LinearRecurrence[{1, 1, 3, 1, -1, -1}, {1, 1, 1, 4, 9, 16}, 40] (* Harvey P. Dale, Jan 14 2015 *)
CoefficientList[Series[(1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 29 2017 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1))) \\ G. C. Greubel, Apr 29 2017
CROSSREFS
Cf. A000930.
Sequence in context: A204503 A138858 A076967 * A363657 A231180 A250029
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Dec 06 2013
STATUS
approved