login
A363657
Numbers m where A217854(m) is a record minimum.
2
1, 4, 9, 16, 36, 100, 144, 324, 400, 576, 900, 1764, 2304, 3600, 7056, 8100, 14400, 28224, 32400, 44100, 57600, 108900, 112896, 129600, 176400, 396900, 435600, 518400, 608400, 705600, 1587600, 2822400, 5336100, 6350400, 14288400, 15681600, 17640000, 21344400
OFFSET
1,2
COMMENTS
(-m)^tau(m) < 0 and (-m)^tau(m) < (-k)^tau(k) for all positive k < m, where tau is the number of divisors function.
All terms are squares.
It is conjectured that if m is a term, then abs((-m)^tau(m)) <= abs((-k)^tau(k)) for some k < m. See the link.
EXAMPLE
9 is a term since (-9)^tau(9) = (-9)^3 = -729 and -729 < (-k)^tau(k) for k = 1,...,8.
25 is not a term since (-25)^tau(5) = (-25)^3 = -15625 > (-16)^tau(16) = (-16)^5 = -1048576 and 16 < 25.
PROG
(PARI) isok(m) = my(x=(-m)^numdiv(m)); for (k=1, m-1, if (x >= (-k)^numdiv(k), return(0))); return(1); \\ Michel Marcus, Jun 18 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Simon Jensen, Jun 13 2023
STATUS
approved