login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of ( 1-x^3-x^2 ) / ( (x^3-x^2-1)*(x^3+2*x^2+x-1) ).
2

%I #28 Sep 30 2024 15:13:09

%S 1,1,1,4,9,16,36,81,169,361,784,1681,3600,7744,16641,35721,76729,

%T 164836,354025,760384,1633284,3508129,7535025,16184529,34762816,

%U 74666881,160376896,344473600,739894401,1589218225,3413480625,7331811876,15747991081,33825095056

%N Expansion of ( 1-x^3-x^2 ) / ( (x^3-x^2-1)*(x^3+2*x^2+x-1) ).

%C a(n) is the number of tilings of a 3 X 2 X n room with bricks of 1 X 1 X 3 shape (and in that respect a generalization of A028447 which fills 3 X 2 X n rooms with bricks of 1 X 1 X 2 shape).

%C The inverse INVERT transform is 1, 0, 3, 2, 2, 4, 4, 6, 8, 10, .. , continued as in A068924.

%C a(n) is the number of tilings of an n-board (a board with dimensions n X 1) with half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2;3)-combs. A (w,g;m)-comb is a tile composed of m pieces of dimensions w X 1 separated horizontally by gaps of width g. - _Michael A. Allen_, Sep 24 2024

%H G. C. Greubel, <a href="/A233247/b233247.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael A. Allen and Kenneth Edwards, <a href="https://doi.org/10.1080/03081087.2022.2107979">Connections between two classes of generalized Fibonacci numbers squared and permanents of (0,1) Toeplitz matrices</a>, Lin. Multilin. Alg. 72:13 (2024) 2091-2103.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1406.7788">Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices</a>, arXiv:1406.7788 [math.CO], 2014, see eq. (39).

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,3,1,-1,-1).

%F a(n) = A000930(n)^2.

%F a(n) = a(n-1) + a(n-3) + 2*Sum_{r=3..n} ( A000931(r+2)*a(n-r) ). - _Michael A. Allen_, Sep 24 2024

%p A233247 := proc(n)

%p A000930(n)^2 ;

%p end proc:

%p # second Maple program:

%p a:= n-> (<<0|1|0>, <0|0|1>, <1|0|1>>^n)[3, 3]^2:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Dec 06 2013

%t Table[Sum[Binomial[n-2i, i], {i,0,n/3}]^2, {n,0,50}] (* _Wesley Ivan Hurt_, Dec 06 2013 *)

%t LinearRecurrence[{1,1,3,1,-1,-1},{1,1,1,4,9,16},40] (* _Harvey P. Dale_, Jan 14 2015 *)

%t CoefficientList[Series[(1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1)), {x, 0, 50}], x] (* _G. C. Greubel_, Apr 29 2017 *)

%o (PARI) my(x='x+O('x^50)); Vec((1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1))) \\ _G. C. Greubel_, Apr 29 2017

%Y Cf. A000930.

%K easy,nonn

%O 0,4

%A _R. J. Mathar_, Dec 06 2013