login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A232822
Prime(m), where m is such that (Sum_{k=1..m} prime(k)^8) / m is an integer.
2
2, 191, 12599173, 53029063, 22806625723729, 27568116247823, 41455846079203, 289700908580893, 1194728983756489, 6275148480751847
OFFSET
1,1
COMMENTS
The primes correspond to indices m = 1, 43, 824747, 3171671, ... = A125828. - M. F. Hasler, Dec 01 2013
a(10) > 1352363608564489. - Bruce Garner, Jul 07 2021
a(11) > 18205684894350047. - Paul W. Dyson, Dec 03 2024
FORMULA
a(n) = prime(A125828(n)). - M. F. Hasler, Dec 01 2013
EXAMPLE
a(2) = 191, because 191 is the 43rd prime and the sum of the first 43 primes^8 = 7287989395992721002 = 43 * 169488125488202814.
MATHEMATICA
t = {}; sm = 0; Do[sm = sm + Prime[n]^8; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^8); s==0 \\ Charles R Greathouse IV, Nov 30 2013
(PARI) S=n=0; forprime(p=1, , (S+=p^8)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013
CROSSREFS
Cf. A125828.
Cf. A085450 (smallest m > 1 that divides Sum_{k=1..m} prime(k)^n).
Sequence in context: A142890 A201183 A103404 * A230228 A197249 A151709
KEYWORD
nonn,more
AUTHOR
Robert Price, Nov 30 2013
EXTENSIONS
a(5)-a(6) from Paul W. Dyson, Jan 01 2021
a(7) from Bruce Garner, Mar 02 2021
a(8) from Bruce Garner, Mar 30 2021
a(9) from Bruce Garner, Jul 07 2021
a(10) from Paul W. Dyson, Jul 07 2023
STATUS
approved