login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227998
Number T(n,k,s) of partitions of an n X k rectangle into s integer-sided squares, considering only the list of parts; irregular triangle T(n,k,s), 1 <= k <= n, s >= 1, read by rows.
3
1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0
OFFSET
1
COMMENTS
The number of entries per row is n*k.
LINKS
Christopher Hunt Gribble, C++ program
FORMULA
T(n,n,s) = A226912(n,s).
Sum_{s=1..n*k} T(n,k,s) = A224697(n,k), 1 <= k <= n.
EXAMPLE
T(6,4,6) = 2 because there are 2 partitions of a 6 X 4 rectangle into integer-sided squares with exactly 6 parts:
(6 2 X 2 squares) and
(4 1 X 1 squares, 1 2 X 2 square, 1 4 X 4 square).
The irregular triangle starts:
n,k Number of Square Parts s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
1,1 1
2,1 0 1
2,2 1 0 0 1
3,1 0 0 1
3,2 0 0 1 0 0 1
3,3 1 0 0 0 0 1 0 0 1
4,1 0 0 0 1
4,2 0 1 0 0 1 0 0 1
4,3 0 0 0 1 0 1 0 0 1 0 0 1
4,4 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1
5,1 0 0 0 0 1
5,2 0 0 0 1 0 0 1 0 0 1
5,3 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1
5,4 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 ...
5,5 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 ...
6,1 0 0 0 0 0 1
6,2 0 0 1 0 0 1 0 0 1 0 0 1
6,3 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1
6,4 0 0 1 0 0 2 0 1 2 1 0 1 1 0 1 1 0 1 ...
6,5 0 0 0 1 1 0 1 1 1 1 2 1 1 2 1 0 1 1 ...
6,6 1 0 0 1 0 1 0 0 3 0 1 4 1 1 2 1 1 2 ...
CROSSREFS
Sequence in context: A280816 A265246 A138709 * A266514 A082960 A320815
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved