OFFSET
0,2
COMMENTS
Generally (for p>1), alternate partial sums of the binomial coefficients C(p*n,n) is asymptotic to (1/(1+(p-1)^(p-1)/p^p)) * sqrt(p/(2*Pi*n*(p-1))) * (p^p/(p-1)^(p-1))^n.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
Recurrence: 3*n*(3*n-2)*(3*n-1)*a(n) = (229*n^3 - 357*n^2 + 170*n - 24)*a(n-1) + 8*(2*n-1)*(4*n-3)*(4*n-1)*a(n-2).
a(n) ~ 2^(8*n+17/2)/(283*sqrt(Pi*n)*3^(3*n+1/2)).
MATHEMATICA
Table[Sum[Binomial[4*k, k]*(-1)^(n-k), {k, 0, n}], {n, 0, 20}]
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n, binomial(4*k, k)), ", ")) \\ G. C. Greubel, Apr 03 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Aug 06 2013
STATUS
approved