login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227996 Alternate partial sums of the binomial coefficients C(5*n,n). 2
1, 4, 41, 414, 4431, 48699, 545076, 6179444, 70725241, 815437894, 9456840276, 110196725574, 1289162119401, 15131911395879, 178121845513281, 2101890841202799, 24856330289305726, 294500697587787599, 3495147445120811176, 41542892270532317969, 494440478133277365001 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Generally (for p>1), alternate partial sums of the binomial coefficients C(p*n,n) is asymptotic to (1/(1+(p-1)^(p-1)/p^p)) * sqrt(p/(2*Pi*n*(p-1))) * (p^p/(p-1)^(p-1))^n.
LINKS
FORMULA
Recurrence: 8*n*(2*n-1)*(4*n-3)*(4*n-1)*a(n) = (2869*n^4 - 5866*n^3 + 4199*n^2 - 1226*n + 120)*a(n-1) + 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-2).
a(n) ~ 5^(5*n+11/2)/(3381*sqrt(Pi*n)*2^(8*n+3/2)).
MATHEMATICA
Table[Sum[Binomial[5*k, k]*(-1)^(n-k), {k, 0, n}], {n, 0, 20}]
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n, binomial(5*k, k)), ", ")) \\ G. C. Greubel, Apr 03 2017
CROSSREFS
Cf. A054108(n-1) (p=2), A188676 (p=3), A227995 (p=4).
Sequence in context: A089454 A193368 A109109 * A236528 A114467 A118450
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Aug 06 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 08:26 EDT 2024. Contains 375753 sequences. (Running on oeis4.)