login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227997 Triangular array read by rows. T(n,k) is the number of square lattice walks that start and end at the origin after 2n steps having k primitive loops; n>=1, 1<=k<=n. 1
4, 20, 16, 176, 160, 64, 1876, 1808, 960, 256, 22064, 22048, 13248, 5120, 1024, 275568, 282528, 182528, 83456, 25600, 4096, 3584064, 3747456, 2542464, 1284096, 481280, 122880, 16384, 47995476, 50981136, 35851968, 19365120, 8186880, 2617344, 573440, 65536, 657037232, 707110432, 511288256, 290053120, 133084160, 48799744, 13647872, 2621440, 262144, 9150655216, 9958458656, 7363711104, 4338317824, 2113592320, 851398656, 276856832, 68943872, 11796480, 1048576 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The walk consists of steps in the four directions NW,NE,SW,SE. A primitive loop is a walk that starts and ends at the origin but does not otherwise touch the origin.
Row sums are A002894.
Column 1 is A054474
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 90.
FORMULA
G.f.: 1/( 1 - y*(1 - 1/A(x)) ) where A(x) is the o.g.f. for A002894.
EXAMPLE
4,
20, 16,
176, 160, 64,
1876, 1808, 960, 256,
22064, 22048, 13248, 5120, 1024,
275568, 282528, 182528, 83456, 25600, 4096
MATHEMATICA
nn=6; a=Sum[Binomial[2n, n]^2x^n, {n, 0, nn}]; Map[Select[#, #>0&]&, Drop[CoefficientList[Series[1/(1-y(1-1/a)), {x, 0, nn}], {x, y}], 1]]//Grid
CROSSREFS
Sequence in context: A213822 A182456 A196380 * A130316 A131745 A261755
KEYWORD
nonn,walk,tabl
AUTHOR
Geoffrey Critzer, Oct 04 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 23:15 EDT 2024. Contains 375749 sequences. (Running on oeis4.)