|
|
A227997
|
|
Triangular array read by rows. T(n,k) is the number of square lattice walks that start and end at the origin after 2n steps having k primitive loops; n>=1, 1<=k<=n.
|
|
1
|
|
|
4, 20, 16, 176, 160, 64, 1876, 1808, 960, 256, 22064, 22048, 13248, 5120, 1024, 275568, 282528, 182528, 83456, 25600, 4096, 3584064, 3747456, 2542464, 1284096, 481280, 122880, 16384, 47995476, 50981136, 35851968, 19365120, 8186880, 2617344, 573440, 65536, 657037232, 707110432, 511288256, 290053120, 133084160, 48799744, 13647872, 2621440, 262144, 9150655216, 9958458656, 7363711104, 4338317824, 2113592320, 851398656, 276856832, 68943872, 11796480, 1048576
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The walk consists of steps in the four directions NW,NE,SW,SE. A primitive loop is a walk that starts and ends at the origin but does not otherwise touch the origin.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 1/( 1 - y*(1 - 1/A(x)) ) where A(x) is the o.g.f. for A002894.
|
|
EXAMPLE
|
4,
20, 16,
176, 160, 64,
1876, 1808, 960, 256,
22064, 22048, 13248, 5120, 1024,
275568, 282528, 182528, 83456, 25600, 4096
|
|
MATHEMATICA
|
nn=6; a=Sum[Binomial[2n, n]^2x^n, {n, 0, nn}]; Map[Select[#, #>0&]&, Drop[CoefficientList[Series[1/(1-y(1-1/a)), {x, 0, nn}], {x, y}], 1]]//Grid
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|