login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213822
Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution.
4
4, 20, 10, 57, 41, 16, 124, 102, 62, 22, 230, 202, 147, 83, 28, 384, 350, 280, 192, 104, 34, 595, 555, 470, 358, 237, 125, 40, 872, 826, 726, 590, 436, 282, 146, 46, 1224, 1172, 1057, 897, 710, 514, 327, 167, 52, 1660, 1602
OFFSET
1,1
COMMENTS
Principal diagonal: A213823.
Antidiagonal sums: A213824.
Row 1, (2,5,8,11,...)**(2,5,8,11,...): (3*k^3 + 3*k^2 + 2*k)/2.
Row 2, (2,5,8,11,...)**(5,8,11,14,...): (3*k^3 + 12*k^2 + 5*k)/2.
Row 3, (2,5,8,11,...)**(8,11,14,17,...): (3*k^3 + 21*k^2 + 8*k)/2.
For a guide to related arrays, see A212500.
LINKS
FORMULA
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*((6*n-2) - (3*n-7)*x - (3*n-4)*x^2) and g(x) = (1-x)^4.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
4....20....57....124...230
10...41....102...202...350
16...62....147...280...470
22...83....192...358...590
28...104...237...436...710
MATHEMATICA
b[n_]:=3n-1; c[n_]:=3n-1;
t[n_, k_]:=Sum[b[k-i]c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:=Table[t[n, k], {k, 1, 60}] (* A213822 *)
Table[t[n, n], {n, 1, 40}] (* A213823 *)
s[n_]:=Sum[t[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213824 *)
CROSSREFS
Cf. A212500.
Sequence in context: A118392 A263964 A180855 * A182456 A196380 A227997
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jul 04 2012
STATUS
approved