The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180855 Square array read by antidiagonals: T(m,n) is the Wiener index of the banana tree B(n,k) (n>=1, k>=2). B(n,k) is the graph obtained by taking n copies of a star graph on k nodes and connecting with an edge one leaf of each of these n stars with an additional node. 0
 4, 20, 10, 48, 56, 18, 88, 138, 108, 28, 140, 256, 270, 176, 40, 204, 410, 504, 444, 260, 54, 280, 600, 810, 832, 660, 360, 70, 368, 826, 1188, 1340, 1240, 918, 476, 88, 468, 1088, 1638, 1968, 2000, 1728, 1218, 608, 108, 580, 1386, 2160, 2716, 2940, 2790 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. LINKS B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969. Eric Weisstein's World of Mathematics, Banana Tree. FORMULA T(n,k) = n(k-1)(3nk-2k+2). T(n,2) = A033579(n). T(n,4) = A060787(n+2). The Wiener polynomial of the tree B(n,k) is W(n,k,t)=(1/2)nt(a+bt+ct^2+dt^3+et^4+ft^5), where a=2k, b=3+n+k^2-3k, c=2n+2k-6, d=(n-1)(2k-3), e=2(n-1)(k-2), and f=(n-1)(k-2)^2. EXAMPLE T(1,2)=4 because the banana tree B(1,2) reduces to a path on 3 nodes, where the distances are 1, 1, and 2. Square array T(n,k) begins: 4,10,18,28,40,54,70; 20,56,108,176,260,360,476; 48,138,270,444,660,918,1218; 88,256,504,832,1240,1728,2296; MAPLE T := proc (n, k) options operator, arrow: n*(k-1)*(3*n*k-2*k+2) end proc: for n to 10 do seq(T(n+2-j, j), j = 2 .. n+1) end do; # yields sequence in triangular form CROSSREFS Cf. A033579, A060787 Sequence in context: A125514 A118392 A263964 * A213822 A182456 A196380 Adjacent sequences:  A180852 A180853 A180854 * A180856 A180857 A180858 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Sep 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 08:51 EST 2022. Contains 350607 sequences. (Running on oeis4.)