login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182456
a(0)=1; for n>0, a(n) = ( a(n-1) mod (n+3) )*(n+3).
1
1, 4, 20, 12, 35, 24, 54, 40, 77, 60, 104, 84, 135, 112, 170, 144, 209, 180, 252, 220, 299, 264, 350, 312, 405, 364, 464, 420, 527, 480, 594, 544, 665, 612, 740, 684, 819, 760, 902, 840, 989, 924, 1080, 1012, 1175, 1104, 1274, 1200, 1377, 1300, 1484
OFFSET
0,2
LINKS
FORMULA
For k>0, a(2*k) = A182455(2*k+3)-1, a(2k+1) = A182455(2k).
From Alexander R. Povolotsky, May 01 2012: (Start)
for the same sequence with index starting from 1 instead of 0, i.e. k=1,2,...
a(k+1) = (k+3)^2 -((k+3)*a(k))/(k+2).
G.f.: (-1-3*x-14*x^2+14*x^3+8*x^4-8*x^5)/((x-1)^3*(1+x)^2). (End)
EXAMPLE
a(6) = (a(5) mod 9) * 9 = (24 mod 9) * 9 = 6*9 = 54.
MATHEMATICA
CoefficientList[Series[(-1 - 3*x - 14*x^2 + 14*x^3 + 8*x^4 - 8*x^5)/((x - 1)^3*(1 + x)^2), {x, 0, 50}], x] (* G. C. Greubel, Feb 25 2017 *)
RecurrenceTable[{a[0]==1, a[n]==Mod[a[n-1], n+3](n+3)}, a, {n, 50}] (* Harvey P. Dale, Oct 21 2018 *)
PROG
(Python)
a=1
for n in range(1, 55):
print(a, end=", ")
a = (a%(n+3)) * (n+3)
(PARI) x='x+O('x^50); Vec((-1-3*x-14*x^2+14*x^3+8*x^4-8*x^5)/((x-1)^3*(1+x)^2)) \\ G. C. Greubel, Feb 25 2017
CROSSREFS
Cf. A182455.
Sequence in context: A263964 A180855 A213822 * A196380 A227997 A130316
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Apr 30 2012
STATUS
approved