login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1; for n>0, a(n) = ( a(n-1) mod (n+3) )*(n+3).
1

%I #23 Jun 20 2020 13:24:54

%S 1,4,20,12,35,24,54,40,77,60,104,84,135,112,170,144,209,180,252,220,

%T 299,264,350,312,405,364,464,420,527,480,594,544,665,612,740,684,819,

%U 760,902,840,989,924,1080,1012,1175,1104,1274,1200,1377,1300,1484

%N a(0)=1; for n>0, a(n) = ( a(n-1) mod (n+3) )*(n+3).

%H G. C. Greubel, <a href="/A182456/b182456.txt">Table of n, a(n) for n = 0..1000</a>

%F For k>0, a(2*k) = A182455(2*k+3)-1, a(2k+1) = A182455(2k).

%F From Alexander R. Povolotsky, May 01 2012: (Start)

%F for the same sequence with index starting from 1 instead of 0, i.e. k=1,2,...

%F a(k+1) = (k+3)^2 -((k+3)*a(k))/(k+2).

%F G.f.: (-1-3*x-14*x^2+14*x^3+8*x^4-8*x^5)/((x-1)^3*(1+x)^2). (End)

%e a(6) = (a(5) mod 9) * 9 = (24 mod 9) * 9 = 6*9 = 54.

%t CoefficientList[Series[(-1 - 3*x - 14*x^2 + 14*x^3 + 8*x^4 - 8*x^5)/((x - 1)^3*(1 + x)^2), {x,0,50}], x] (* _G. C. Greubel_, Feb 25 2017 *)

%t RecurrenceTable[{a[0]==1,a[n]==Mod[a[n-1],n+3](n+3)},a,{n,50}] (* _Harvey P. Dale_, Oct 21 2018 *)

%o (Python)

%o a=1

%o for n in range(1, 55):

%o print(a, end=",")

%o a = (a%(n+3)) * (n+3)

%o (PARI) x='x+O('x^50); Vec((-1-3*x-14*x^2+14*x^3+8*x^4-8*x^5)/((x-1)^3*(1+x)^2)) \\ _G. C. Greubel_, Feb 25 2017

%Y Cf. A182455.

%K nonn,easy

%O 0,2

%A _Alex Ratushnyak_, Apr 30 2012