login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution.
4

%I #10 Jul 12 2012 12:10:22

%S 4,20,10,57,41,16,124,102,62,22,230,202,147,83,28,384,350,280,192,104,

%T 34,595,555,470,358,237,125,40,872,826,726,590,436,282,146,46,1224,

%U 1172,1057,897,710,514,327,167,52,1660,1602

%N Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution.

%C Principal diagonal: A213823.

%C Antidiagonal sums: A213824.

%C Row 1, (2,5,8,11,...)**(2,5,8,11,...): (3*k^3 + 3*k^2 + 2*k)/2.

%C Row 2, (2,5,8,11,...)**(5,8,11,14,...): (3*k^3 + 12*k^2 + 5*k)/2.

%C Row 3, (2,5,8,11,...)**(8,11,14,17,...): (3*k^3 + 21*k^2 + 8*k)/2.

%C For a guide to related arrays, see A212500.

%H Clark Kimberling, <a href="/A213822/b213822.txt">Antidiagonals n = 1..80, flattened</a>

%F T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).

%F G.f. for row n: f(x)/g(x), where f(x) = x*((6*n-2) - (3*n-7)*x - (3*n-4)*x^2) and g(x) = (1-x)^4.

%e Northwest corner (the array is read by falling antidiagonals):

%e 4....20....57....124...230

%e 10...41....102...202...350

%e 16...62....147...280...470

%e 22...83....192...358...590

%e 28...104...237...436...710

%t b[n_]:=3n-1;c[n_]:=3n-1;

%t t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]

%t TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]

%t Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]

%t r[n_]:=Table[t[n,k],{k,1,60}] (* A213822 *)

%t Table[t[n,n],{n,1,40}] (* A213823 *)

%t s[n_]:=Sum[t[i,n+1-i],{i,1,n}]

%t Table[s[n],{n,1,50}] (* A213824 *)

%Y Cf. A212500.

%K nonn,tabl,easy

%O 1,1

%A _Clark Kimberling_, Jul 04 2012