The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289164 Number of dominating sets in the n X n black bishop graph. 7
 1, 3, 25, 201, 6979, 233727, 31262125, 4103802933, 2141080094839, 1107896230202475, 2284899650399760961, 4697484584102406799521, 38572957675399837886746123, 316392839278535985537956881623, 10375350180532286630209934837828053 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..50 Eric Weisstein's World of Mathematics, Black Bishop Graph Eric Weisstein's World of Mathematics, Dominating Set PROG (PARI) Collect(sig, v, r, x)={forstep(r=r, 1, -1, my(w=sig[r]+1); v=vector(#v, k, sum(j=1, k, binomial(#v-j, k-j)*v[j]*x^(k-j)*(1+x)^(w-#v+j-1))-v[k])); v[#v]} DomSetCount(sig, x)={my(v=[1]); my(total=Collect(sig, v, #sig, x)); forstep(r=#sig, 1, -1, my(w=sig[r]+1); total+=Collect(sig, vector(w, k, if(k<=#v, v[k])), r-1, x); v=vector(w, k, sum(j=1, min(k, #v), binomial(w-j, k-j)*v[j]*x^(k-j)*(1+x)^(j-1)))); total} Bishop(n, white)=vector(n-if(white, n%2, 1-n%2), i, n-i+if(white, 1-i%2, i%2)); a(n)=DomSetCount(Bishop(n, 0), 1); \\ Andrew Howroyd, Nov 05 2017 CROSSREFS Cf. A286886, A289145, A289170. Sequence in context: A227995 A037776 A037664 * A037783 A037587 A280970 Adjacent sequences:  A289161 A289162 A289163 * A289165 A289166 A289167 KEYWORD nonn AUTHOR Eric W. Weisstein, Jun 26 2017 EXTENSIONS Terms a(8) and beyond from Andrew Howroyd, Nov 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 00:46 EDT 2021. Contains 346493 sequences. (Running on oeis4.)