login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289161
Number of 3-cycles in the n X n black bishop graph.
4
0, 0, 2, 6, 24, 50, 114, 196, 352, 540, 850, 1210, 1752, 2366, 3234, 4200, 5504, 6936, 8802, 10830, 13400, 16170, 19602, 23276, 27744, 32500, 38194, 44226, 51352, 58870, 67650, 76880, 87552, 98736, 111554, 124950, 140184, 156066, 174002, 192660
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Black Bishop Graph
Eric Weisstein's World of Mathematics, Graph Cycle
FORMULA
a(n) = (n-1)^2*(2*n^2-4*n+3-3*(-1)^n)/24.
a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8).
G.f.: (-2*x^3*(1+x+4*x^2+x^3+x^4))/((-1+x)^5*(1+x)^3).
MATHEMATICA
Table[(n - 1)^2 (2 n^2 - 4 n + 3 - 3 (-1)^n)/24, {n, 20}]
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 2, 6, 24, 50, 114, 196}, 20]
CoefficientList[Series[-((2 x^2 (1 + x + 4 x^2 + x^3 + x^4))/((-1 + x)^5 (1 + x)^3)), {x, 0, 20}], x]
PROG
(PARI) concat(vector(2), Vec(2*x^3*(1 + x + 4*x^2 + x^3 + x^4) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ Colin Barker, Jun 27 2017
CROSSREFS
Cf. A289162 (4-cycles), A289163 (5-cycles), A289160 (6-cycles).
Sequence in context: A321613 A104114 A175624 * A118038 A240428 A276838
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 26 2017
STATUS
approved