login
Number T(n,k,s) of partitions of an n X k rectangle into s integer-sided squares, considering only the list of parts; irregular triangle T(n,k,s), 1 <= k <= n, s >= 1, read by rows.
3

%I #34 Sep 06 2021 04:25:53

%S 1,0,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,1,

%T 0,0,1,0,0,0,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,

%U 0,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,0,1,0

%N Number T(n,k,s) of partitions of an n X k rectangle into s integer-sided squares, considering only the list of parts; irregular triangle T(n,k,s), 1 <= k <= n, s >= 1, read by rows.

%C The number of entries per row is n*k.

%H Christopher Hunt Gribble, <a href="/A227998/b227998.txt">Rows 1..36 for n=1..8 and k=1..n flattened</a>

%H Christopher Hunt Gribble, <a href="/A227998/a227998.cpp.txt">C++ program</a>

%F T(n,n,s) = A226912(n,s).

%F Sum_{s=1..n*k} T(n,k,s) = A224697(n,k), 1 <= k <= n.

%e T(6,4,6) = 2 because there are 2 partitions of a 6 X 4 rectangle into integer-sided squares with exactly 6 parts:

%e (6 2 X 2 squares) and

%e (4 1 X 1 squares, 1 2 X 2 square, 1 4 X 4 square).

%e The irregular triangle starts:

%e n,k Number of Square Parts s

%e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

%e 1,1 1

%e 2,1 0 1

%e 2,2 1 0 0 1

%e 3,1 0 0 1

%e 3,2 0 0 1 0 0 1

%e 3,3 1 0 0 0 0 1 0 0 1

%e 4,1 0 0 0 1

%e 4,2 0 1 0 0 1 0 0 1

%e 4,3 0 0 0 1 0 1 0 0 1 0 0 1

%e 4,4 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1

%e 5,1 0 0 0 0 1

%e 5,2 0 0 0 1 0 0 1 0 0 1

%e 5,3 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1

%e 5,4 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 ...

%e 5,5 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 ...

%e 6,1 0 0 0 0 0 1

%e 6,2 0 0 1 0 0 1 0 0 1 0 0 1

%e 6,3 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1

%e 6,4 0 0 1 0 0 2 0 1 2 1 0 1 1 0 1 1 0 1 ...

%e 6,5 0 0 0 1 1 0 1 1 1 1 2 1 1 2 1 0 1 1 ...

%e 6,6 1 0 0 1 0 1 0 0 3 0 1 4 1 1 2 1 1 2 ...

%Y Cf. A034295, A226912.

%K nonn,tabf

%O 1

%A _Christopher Hunt Gribble_, Aug 06 2013