login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227506
Schroeder triangle sums: a(2*n-1) = A010683(2*n-2) and a(2*n) = A010683(2*n-1) - A001003(2*n-1).
2
1, 1, 7, 17, 121, 353, 2591, 8257, 61921, 207905, 1582791, 5501073, 42344121, 150827073, 1170747519, 4247388417, 33186295681, 122125206977, 959260792775, 3570473750929, 28167068630713, 105820555054241, 837838806587167, 3172136074486337
OFFSET
1,3
COMMENTS
The terms of this sequence equal the Fi1 sums, see A180662, of the Schroeder triangle A033877 (with offset 1 and n for columns and k for rows).
FORMULA
a(n) = Sum_{k=1..floor((n+1)/2)} A033877(2*k-1,n).
a(2*n-1) = A010683(2*n-2) and a(2*n) = A010683(2*n-1) - A001003(2*n-1).
G.f.: (1-4*x+x^2 - sqrt(1-6*x+x^2) + x*sqrt(1+6*x+x^2))/(8*x).
MAPLE
A227506 := proc(n) local k, T; T := proc(n, k) option remember; if n=1 then return(1) fi; if k<n then return(0) fi; T(n, k-1)+T(n-1, k-1)+T(n-1, k) end; add(T(2*k-1, n), k = 1..iquo(n+1, 2)) end: seq(A227506(n), n = 1..24); # Peter Luschny, Jul 17 2013
A227506 := proc(n): if type(n, odd) then A010683(n-1) else A010683(n-1) - A001003(n-1) fi: end: A010683 := proc(n): if n = 0 then 1 else (2/n)*add(binomial(n, k)* binomial(n+k+1, k-1), k=1..n) fi: end: A001003 := proc(n): if n = 0 then 1 else add(binomial(n, j)*binomial(n+j, n-1), j=0..n)/(2*n) fi: end: seq(A227506(n), n=1..24);
MATHEMATICA
T[n_, k_] := T[n, k] = Which[n == 1, 1, k < n, 0, True, T[n, k - 1] + T[n - 1, k - 1] + T[n - 1, k]];
a[n_] := Sum[T[2 k - 1, n], {k, 1, (n + 1)/2}];
Array[a, 24] (* Jean-François Alcover, Jul 11 2019, from Sage *)
PROG
(Sage)
def A227506(n):
@CachedFunction
def T(n, k):
if n==1: return 1
if k <n: return 0
return T(n, k-1)+T(n-1, k-1)+T(n-1, k)
return add(T(2*k-1, n) for k in (1..(n+1)//2))
[A227506(n) for n in (1..24)] # Peter Luschny, Jul 16 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Jul 15 2013
STATUS
approved