login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325584
G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n * ((1 + 4*x)^n - A(x))^(n+1), where A(0) = 0.
5
1, 7, 17, 143, 1297, 10943, 119041, 1352319, 16521601, 217712895, 3035672577, 44699885311, 692651630593, 11245459802111, 190749994213377, 3372199652642815, 61989222776496129, 1182514506870886399, 23367685697859391489, 477573301465741901823, 10079510247865215746049, 219396394337370417070079, 4918940850123829203173377, 113466581251217062104399871, 2690031991636202195545948161
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} x^n * ((1 + 4*x)^n - A(x))^(n+1).
(2) 1 + x = Sum_{n>=0} x^n * (1 + 4*x)^(n*(n-1)) / (1 + x*(1 + 4*x)^n*A(x))^(n+1).
FORMULA FOR TERMS.
a(n) = (-1)^n (mod 4) for n >= 0.
EXAMPLE
G.f.: A(x) = x + 7*x^2 + 17*x^3 + 143*x^4 + 1297*x^5 + 10943*x^6 + 119041*x^7 + 1352319*x^8 + 16521601*x^9 + 217712895*x^10 + 3035672577*x^11 + ...
such that
1 = (1 - A(x)) + x*((1+4*x) - A(x))^2 + x^2*((1+4*x)^2 - A(x))^3 + x^3*((1+4*x)^3 - A(x))^4 + x^4*((1+4*x)^4 - A(x))^5 + x^5*((1+4*x)^5 - A(x))^6 + x^6*((1+4*x)^6 - A(x))^7 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, x^m*((1 + 4*x +x*O(x^#A))^m - x*Ser(A))^(m+1) ), #A); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 11 2019
STATUS
approved