login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325587
G.f.: Sum_{n>=0} (n+1)*(n+2)*(n+3)/3! * x^n * (1+x)^(n*(n+3)).
3
1, 4, 26, 144, 861, 5300, 33974, 226716, 1572134, 11318196, 84460828, 652359324, 5207769776, 42909334344, 364439847976, 3186742207624, 28656418042704, 264722157073936, 2509700822675234, 24395793491141136, 242936835660951240, 2476311278424167804, 25817877582760234776, 275124609022178797944, 2994612410107793787156, 33272066553220515090708, 377127538637173442895684, 4358346743099457288466696
OFFSET
0,2
COMMENTS
Equals column 3 of triangle A325580.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 26*x^2 + 144*x^3 + 861*x^4 + 5300*x^5 + 33974*x^6 + 226716*x^7 + 1572134*x^8 + 11318196*x^9 + 84460828*x^10 + 652359324*x^11 + ...
such that
A(x) = 1 + 4*x*(1+x)^4 + 10*x^2*(1+x)^10 + 20*x^3*(1+x)^18 + 35*x^4*(1+x)^28 + 56*x^5*(1+x)^40 + 84*x^6*(1+x)^54 + 120*x^7*(1+x)^70 + 165*x^8*(1+x)^88 + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, (m+1)*(m+2)*(m+3)/3! * x^m * (1+x +x*O(x^n))^(m*(m+3)) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A100236 A229278 A180226 * A223627 A144068 A204062
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 11 2019
STATUS
approved