OFFSET
1,3
COMMENTS
As n-->inf, a(n)/A244280(n) converges to 0.628736607098954801603428... ; this number has a surprisingly elegant standard continued fraction representation of [0; 1, 1, 1, 2, 3, 1, 4, 5, 1, 6, 7, 1, 8, 9...].
LINKS
Robert Israel, Table of n, a(n) for n = 1..449
FORMULA
This is the result of taking the numerator of a continued fraction with alternating signs a(n) = 1/(1+1/(2-1/(3+1/(4-...1/(n +/- 1))))), where addition follows an odd number and subtraction follows an even number.
EXAMPLE
a(1) = 1/(1+1) = 1/2;
a(2) = 1/(1+1/(2-1)) = 1/2;
a(3) = 1/(1+1/(2-1/(3+1))) = 7/11;
a(4) = 1/(1+1/(2-1/(3+1/(4-1)))) = 17/27.
MAPLE
seq(numer(numtheory:-cfrac([0, [1, 1], seq([(-1)^j, j], j=2..n), [(-1)^(n+1), 1]])), n = 1..40); # Robert Israel, Jan 17 2016
PROG
(PARI) a(n) = if(n%2==0, s=-1, s=1); t=1; while(n>0, t=n+s/t; n--; s=-s); numerator(t=1/t)
vector(30, n, a(n)) \\ Colin Barker, Jul 20 2014
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Mohamed Sabba, Jun 24 2014
EXTENSIONS
More terms from Colin Barker, Jul 20 2014
STATUS
approved