login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A226317
Decimal expansion of the constant of Theodorus.
6
1, 8, 6, 0, 0, 2, 5, 0, 7, 9, 2, 2, 1, 1, 9, 0, 3, 0, 7, 1, 8, 0, 6, 9, 5, 9, 1, 5, 7, 1, 7, 1, 4, 3, 3, 2, 4, 6, 6, 6, 5, 2, 4, 1, 2, 1, 5, 2, 3, 4, 5, 1, 4, 9, 3, 0, 4, 9, 1, 9, 9, 5, 0, 3, 5, 9, 8, 3, 4, 2, 7, 2, 3, 3, 9, 9, 9, 2, 1, 3, 2, 0, 5, 6, 8, 8, 3, 8, 7, 5, 6, 4, 9, 9, 6, 1, 4, 4, 9, 5
OFFSET
1,2
COMMENTS
The decimal expansion of the Sum {k>=1} 1/(k^(3/2) + k^(1/2)).
This constant was first identified by Professor Philip J. Davis.
This constant is not in Steven R. Finch, Mathematical Constants, Cambridge, 2003, nor is it in the Inverse Symbolic Calculator (originally by Simon Plouffe & the Borwein brothers).
REFERENCES
Philip J. Davis, Spirals: From Theodorus to Chaos, AK Peters, 1993.
Julian R. Havil, The Irrationals: A Story of the Numbers You Can't Count On, Princeton University Press, Princeton NJ, 2012, page 277.
LINKS
David Brink, The spiral of Theodorus and sums of zeta-values at the half-integers, The American Mathematical Monthly, Vol. 119, No. 9 (November 2012), pp. 779-786.
Ewan Brinkman, Robert Corless, and Veselin Jungic, The Theodorus Variation, Maple Transactions, Vol. 1, No. 2 (2021), Article 14500.
Steven Finch, Constant of Theodorus [broken link. Probably removed from CiteSeerX]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 663.
Kevin Ryde, Math-PlanePath, Theodorus Spiral.
Jörg Waldvogel, Analytic Continuation of the Theodorus Spiral, Seminar für Angewandte Mathematik, ETH Zürich, 2008.
Eric Weisstein's World of Mathematics, Theodorus's Constant.
FORMULA
Sum_{k>=1} 1/(k^(3/2) + k^(1/2)).
Equals -(2/sqrt(Pi)) * Integral_{x>=0} (exp(x^2)*log(1-exp(-x^2))+1) dx (Waldvogel, 2008). - Amiram Eldar, Jul 19 2022
EXAMPLE
1.86002507922119030718069591571714332466652412152345149304919950359788...
MAPLE
Digits := 102: evalf(sum((k^(3/2) + k^(1/2))^(-1), k=1..infinity));
# Peter Luschny, Feb 28 2022
MATHEMATICA
digits = 100; 2/Sqrt[Pi]*NIntegrate[(-Exp[t^2])*Log[1 - Exp[-t^2]] - 1, {t, 0, Infinity}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First
(* or *)
a = NSum[1/(k^(3/2) + k^(1/2)), {k, 1, Infinity}, AccuracyGoal -> 2^8, PrecisionGoal -> 2^8, WorkingPrecision -> 2^8, NSumTerms -> 2^15]; RealDigits[a, 10, 105][[1]]
PROG
(PARI) sumpos(k=1, 1/sqrt(k)/(1+k)) \\ Charles R Greathouse IV, Aug 29 2013
(PARI) sumalt(k=0, zeta(k+3/2)*(-1)^k) \\ Charles R Greathouse IV, Aug 29 2013
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Walter Gautschi (wxg(AT)cs.purdue.edu), Robert G. Wilson v, and Jean-François Alcover, Apr 15 2013
STATUS
approved