OFFSET
1,3
COMMENTS
LINKS
Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
Yoram Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.
EXAMPLE
Triangle begins:
[1]
[1, 2]
[1, 2, 3]
[1, 3, 3, 4]
[1, 2, 3, 4, 5]
[1, 4, 5, 5, 5, 6]
[1, 2, 3, 4, 5, 6, 7]
[1, 5, 3, 7, 5, 7, 7, 8]
[1, 2, 7, 4, 5, 8, 7, 8, 9]
[1, 6, 3, 7, 9, 8, 7, 9, 9, 10]
...
The resulting triangle of fractions begins:
1,
1/2, 2,
1/3, 2/3, 3,
1/4, 3/2, 3/4, 4,
1/5, 2/5, 3/5, 4/5, 5,
...
MAPLE
f:=(i, j) -> j+(i-j)/gcd(i, j);
g:=n->[seq(f(i, n), i=1..n)];
for n from 1 to 20 do lprint(g(n)); od:
PROG
(Haskell)
a226314 n k = n - (n - k) `div` gcd n k
a226314_row n = a226314_tabl !! (n-1)
a226314_tabl = map f $ tail a002262_tabl where
f us'@(_:us) = map (v -) $ zipWith div vs (map (gcd v) us)
where (v:vs) = reverse us'
-- Reinhard Zumkeller, Jun 10 2013
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jun 09 2013
STATUS
approved