login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226314
Triangle read by rows: T(i,j) = j+(i-j)/gcd(i,j) (1<=i<=j).
9
1, 1, 2, 1, 2, 3, 1, 3, 3, 4, 1, 2, 3, 4, 5, 1, 4, 5, 5, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 5, 3, 7, 5, 7, 7, 8, 1, 2, 7, 4, 5, 8, 7, 8, 9, 1, 6, 3, 7, 9, 8, 7, 9, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 7, 9, 10, 5, 11, 7, 11, 11, 11, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 8, 3, 9, 5, 10, 13, 11, 9, 12, 11, 13, 13, 14
OFFSET
1,3
COMMENTS
The triangle of fractions A226314(i,j)/A054531(i,j) is an efficient way to enumerate the rationals [Fortnow].
Sum(A226314(n,k)/A054531(n,k): 1<=k<=n) = A226555(n)/A040001(n). - Reinhard Zumkeller, Jun 10 2013
LINKS
Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
Yoram Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.
EXAMPLE
Triangle begins:
[1]
[1, 2]
[1, 2, 3]
[1, 3, 3, 4]
[1, 2, 3, 4, 5]
[1, 4, 5, 5, 5, 6]
[1, 2, 3, 4, 5, 6, 7]
[1, 5, 3, 7, 5, 7, 7, 8]
[1, 2, 7, 4, 5, 8, 7, 8, 9]
[1, 6, 3, 7, 9, 8, 7, 9, 9, 10]
...
The resulting triangle of fractions begins:
1,
1/2, 2,
1/3, 2/3, 3,
1/4, 3/2, 3/4, 4,
1/5, 2/5, 3/5, 4/5, 5,
...
MAPLE
f:=(i, j) -> j+(i-j)/gcd(i, j);
g:=n->[seq(f(i, n), i=1..n)];
for n from 1 to 20 do lprint(g(n)); od:
PROG
(Haskell)
a226314 n k = n - (n - k) `div` gcd n k
a226314_row n = a226314_tabl !! (n-1)
a226314_tabl = map f $ tail a002262_tabl where
f us'@(_:us) = map (v -) $ zipWith div vs (map (gcd v) us)
where (v:vs) = reverse us'
-- Reinhard Zumkeller, Jun 10 2013
CROSSREFS
KEYWORD
nonn,frac,tabl
AUTHOR
N. J. A. Sloane, Jun 09 2013
STATUS
approved