OFFSET
1,3
COMMENTS
Row n is a permutation of the integers in the interval [1, binomial(n,floor(n/2))].
See A367508 for the description of the Christmas tree patterns, references and links.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..13494 (rows 1..15 of the triangle, flattened).
EXAMPLE
Triangle begins (vertical bars separate indices of rows having different lengths):
.
[1] 1;
[2] 1| 2;
[3] 1 2| 3;
[4] 1 3| 2 4 5| 6;
[5] 1 2 4 5 7| 3 6 8 9|10;
[6] 1 3 7 9 13| 2 4 5 8 10 11 14 15 17| 6 12 16 18 19|20;
...
For example, the order 4 of the Christmas tree pattern is the following:
.
1010 Row 1 length = 1
1000 1001 1011 Row 2 length = 3
1100 Row 3 length = 1
0100 0101 1101 Row 4 length = 3
0010 0110 1110 Row 5 length = 3
0000 0001 0011 0111 1111 Row 6 length = 5
.
and ordering the rows by length (and then by row index) gives 1, 3, 2, 4, 5, 6.
MATHEMATICA
With[{nmax=8}, Map[Flatten[Values[PositionIndex[#]]]&, SubstitutionSystem[{1->{2}, t_/; t>1:>{t-1, t+1}}, {2}, nmax-1]]]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paolo Xausa, Dec 23 2023
STATUS
approved