login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226312
Sum_{k=0..n} k*binomial(n,k)^2*binomial(2*k,k).
1
0, 2, 20, 186, 1704, 15510, 140676, 1273230, 11508048, 103919022, 937787100, 8458728630, 76269112200, 687496910490, 6195793616460, 55827244680930, 502959206683296, 4530723835554270, 40809306881317068, 367548287590324902, 3310080578306654520
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 3^(2*n+1/2)/(2*Pi). - Vaclav Kotesovec, Jun 10 2013
Recurrence: (n-2)*n*(n-1)*a(n) = (n-2)*(10*n^2-10*n+3)*a(n-1) - 9*(n-1)^3*a(n-2). - Vaclav Kotesovec, Jun 10 2013
G.f.: 2*x*((5+3*x)*(1-9*x)^2*hypergeom([2/3, 2/3],[1],-27*x*(1-x)^2/(1-9*x)^2)-4*(1-x)*(1+3*x)^3*hypergeom([5/3, 5/3],[2],-27*x*(1-x)^2/(1-9*x)^2))/(1-9*x)^(13/3). - Mark van Hoeij, Apr 11 2014
MAPLE
f:=n->add(k*binomial(n, k)^2*binomial(2*k, k), k=0..n);
[seq(f(n), n=0..40)];
MATHEMATICA
Table[Sum[k*Binomial[n, k]^2*Binomial[2*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 10 2013 *)
CROSSREFS
Sequence in context: A279462 A037566 A125857 * A171076 A287999 A348886
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 08 2013
STATUS
approved