OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Bruno Haible, Combinatorial proof of a binomial identity, 1992.
FORMULA
a(n) ~ 3^(2*n+1/2)/(2*Pi). - Vaclav Kotesovec, Jun 10 2013
Recurrence: (n-2)*n*(n-1)*a(n) = (n-2)*(10*n^2-10*n+3)*a(n-1) - 9*(n-1)^3*a(n-2). - Vaclav Kotesovec, Jun 10 2013
G.f.: 2*x*((5+3*x)*(1-9*x)^2*hypergeom([2/3, 2/3],[1],-27*x*(1-x)^2/(1-9*x)^2)-4*(1-x)*(1+3*x)^3*hypergeom([5/3, 5/3],[2],-27*x*(1-x)^2/(1-9*x)^2))/(1-9*x)^(13/3). - Mark van Hoeij, Apr 11 2014
MAPLE
f:=n->add(k*binomial(n, k)^2*binomial(2*k, k), k=0..n);
[seq(f(n), n=0..40)];
MATHEMATICA
Table[Sum[k*Binomial[n, k]^2*Binomial[2*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 10 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 08 2013
STATUS
approved