login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225480
a(n) = B2(n) * C(n) where B2(n) are generalized Bernoulli numbers and C(n) the Clausen numbers.
1
1, 0, -2, 0, 14, 0, -62, 0, 254, 0, -5110, 0, 2828954, 0, -114674, 0, 237036478, 0, -11499383114, 0, 183092554714, 0, -3584085584926, 0, 3965530936622474, 0, -573989008898786, 0, 6375197353574922166, 0, -9251189109760413581110, 0, 33111281730973040956798, 0
OFFSET
0,3
COMMENTS
The Clausen numbers C(n) are T(n, 1) in A160014.
FORMULA
Let B(n,m) = sum_{k = 0..n} sum_{j = 0..k} sum_{v = 0..j} ((-1)^(n-v)/(j+1)) *binomial(n,k)*binomial(j,v)*(m*v)^k then a(n) = B(n,2)*A141056(n).
Let B2(n) = sum_{k=0..n} ((-1)^k*k!/(k+1)) S_{2}(n, k) where S_{2}(n, k) the Stirling-Frobenius subset numbers A039755(n, k) then a(n) = B2(n)*A141056(n).
EXAMPLE
The numerators of 1/1, 0/2, -2/6, 0/2, 14/30, 0/2, -62/42, 0/2, 254/30, 0/2, -5110/66, 0/2, 2828954/2730, ... (the denominators are the Clausen numbers).
MAPLE
B := (n, m) -> add(add(add(((-1)^(n-v)/(j+1))*binomial(n, k)*binomial(j, v)*(m*v)^k, v = 0..j), j = 0..k), k = 0..n);
C := proc(n) numtheory[divisors](n); map(i->i+1, %); select(isprime, %); mul(i, i=%) end:
A225480 := n -> B(n, 2)*C(n); seq(A225480(n), n = 0..33);
MATHEMATICA
B[n_, m_] := Sum[((-1)^(n - v)/(j + 1))*Binomial[n, k]*Binomial[j, v]*If[k == 0, 1, (m*v)^k], {k, 0, n}, {j, 0, k}, {v, 0, j}];
c[n_] := Denominator[Sum[Boole[PrimeQ[d + 1]]/(d + 1), {d, Divisors[n]}]];
a[n_] := B[n, 2]*c[n];
Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Aug 02 2019, from Maple *)
PROG
@CachedFunction
def EulerianNumber(n, k, m) : # The Eulerian numbers
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+(m*k+1)*EulerianNumber(n-1, k, m)
@CachedFunction
def B(n, m): # The generalized Bernoulli numbers
return add(add(EulerianNumber(n, j, m)*binomial(j, n - k)
for j in (0..n))*(-1)^k/(k+1) for k in (0..n))
def A225480(n):
if n == 0: return 1
C = mul(filter(lambda s: is_prime(s) , map(lambda i: i+1, divisors(n))))
return C*B(n, 2)
[A225480(n) for n in (0..33)]
CROSSREFS
Sequence in context: A122688 A293936 A110685 * A286118 A286084 A286732
KEYWORD
sign,frac
AUTHOR
Peter Luschny, May 30 2013
STATUS
approved