login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110685 Expansion of (1+4*x-2*x^2-4*x^3+4*x^4) / ((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)). 4
-1, 2, 0, -13, 60, -220, 765, -2662, 9384, -33457, 120048, -431896, 1554957, -5598250, 20151564, -72527377, 261011940, -939300196, 3380216661, -12164232958, 43774972368, -157531648801, 566904871752, -2040106024480, 7341678056925 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = -6*a(n-1) - 10*a(n-2) - 3*a(n-3) + 8*a(n-4) + 6*a(n-5) + 6*a(n-6) for n>5. - Colin Barker, May 19 2019
MAPLE
seriestolist(series((1+4*x-2*x^2-4*x^3+4*x^4)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4basejforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: sum[Y[15]] = sum[ * ], Fortype is set to: 1A.
MATHEMATICA
CoefficientList[Series[(1 + 4*x - 2*x^2 - 4*x^3 + 4*x^4)/((x - 1)*(3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 06 217 *)
PROG
(PARI) Vec((1+4*x-2*x^2-4*x^3+4*x^4)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Sequence in context: A274107 A122688 A293936 * A225480 A286118 A286084
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Aug 02 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)