OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-6, -10, -3, 8, 6, 6).
FORMULA
a(0)=1, a(1)=-7, a(2)=21, a(3)=-79, a(4)=279, a(5)=-997, a(n)= -6*a(n-1)- 10*a(n-2)-3*a(n-3)+8*a(n-4)+6*a(n-5)+6*a(n-6). - Harvey P. Dale, May 08 2011
MAPLE
seriestolist(series((7*x^2+3*x-1)*(2*x^2+2*x+1)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-2tesforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: sum[Y[15]] = sum[ * ], Fortype is set to: 1A.
MATHEMATICA
LinearRecurrence[{-6, -10, -3, 8, 6, 6}, {1, -7, 21, -79, 279, -997}, 40] (* or *) CoefficientList[Series[(7x^2+3x-1)(2x^2+2x+1)/((x-1)(3x^2+3x+1)(2x^3+ 2x^2+4x+1)), {x, 0, 40}], x] (* Harvey P. Dale, May 08 2011 *)
PROG
(PARI) Vec((7*x^2+3*x-1)*(2*x^2+2*x+1)/((x-1)*(3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Aug 02 2005
STATUS
approved