login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225483
Triangle T(n, k) = Sum_{j=0..k} (-1)^(k-j)*A159041(2*n+1, j), read by rows.
2
1, 1, -26, 1, 1, -120, 1192, -120, 1, 1, -502, 14609, -88736, 14609, -502, 1, 1, -2036, 152638, -2205524, 9890752, -2205524, 152638, -2036, 1, 1, -8178, 1479727, -45541628, 424761262, -1551163136, 424761262, -45541628, 1479727, -8178, 1
OFFSET
0,3
FORMULA
T(n, k) = [x^k]( A159041(x,n)/(x+1) ).
From G. C. Greubel, Mar 29 2022: (Start)
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*A159041(2*n+1, j).
T(n, 2*n-k) = T(n, k). (End)
EXAMPLE
The triangle begins:
1;
1, -26, 1;
1, -120, 1192, -120, 1;
1, -502, 14609, -88736, 14609, -502, 1;
1, -2036, 152638, -2205524, 9890752, -2205524, 152638, -2036, 1;
MATHEMATICA
(* First program *)
Needs["Combinatorica`"];
p[n_, x_]:= p[n, x]= Sum[If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<=Floor[n/2], (-1)^i*Eulerian[n+1, i]*x^i, (-1)^(n-i+1)*Eulerian[n+1, i]*x^i]], {i, 0, n}]/(1- x^2);
Table[CoefficientList[p[x, 2*n], x], {n, 0, 10}]//Flatten
(* Second program *)
A008292[n_, k_]:= A008292[n, k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
f[n_, k_]:= f[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], f[n, k-1] + (-1)^k*A008292[n+2, k+1], f[n, n-k]]]; (* f = A159041 *)
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*f[2*n+1, j], {j, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, 2*n}]//Flatten (* G. C. Greubel, Mar 29 2022 *)
PROG
(Sage)
def A008292(n, k): return sum( (-1)^j*(k-j)^n*binomial(n+1, j) for j in (0..k) )
@CachedFunction
def f(n, k): # A159041
if (k==0 or k==n): return 1
elif (k <= (n//2)): return f(n, k-1) + (-1)^k*A008292(n+2, k+1)
else: return f(n, n-k)
def A225483(n, k): return sum( (-1)^(k-j)*f(2*n+1, j) for j in (0..k) )
flatten([[A225483(n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 29 2022
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula, May 08 2013
EXTENSIONS
Edited by G. C. Greubel, Mar 29 2022
STATUS
approved