login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173583
Triangle T(n, k, q) = q-binomial(n, k, q^2), for q = 5, read by rows.
1
1, 1, 1, 1, 26, 1, 1, 651, 651, 1, 1, 16276, 407526, 16276, 1, 1, 406901, 254720026, 254720026, 406901, 1, 1, 10172526, 159200423151, 3980255126276, 159200423151, 10172526, 1, 1, 254313151, 99500274641901, 62191645548485651, 62191645548485651, 99500274641901, 254313151, 1
OFFSET
0,5
COMMENTS
Row sums are: 1, 2, 28, 1304, 440080, 510253856, 4298676317632, 124582292154881408, ...
FORMULA
T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) where c(n, q) = Product_{j=1..n} (1 -q^(2*j))/(1-q) for q = 5.
From G. C. Greubel, Feb 22 2021: (Start)
T(n, k, q) = q-binomial(n, k, q^2), for q = 5.
T(n, k) = T(n-1, k-1) + p^k * T(n-1, k), with p = 25 (as a number triangle). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 26, 1;
1, 651, 651, 1;
1, 16276, 407526, 16276, 1;
1, 406901, 254720026, 254720026, 406901, 1;
1, 10172526, 159200423151, 3980255126276, 159200423151, 10172526, 1;
MATHEMATICA
(* First program *)
c[n_, q_]:= Product[(1 -q^(2*j))/(1-q), {j, 1, n}];
T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n, k, 5], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
Table[QBinomial[n, k, 5^2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2021 *)
T[n_, k_, p_]:= T[n, k, p] = If[k==0 || k==n, 1, T[n-1, k-1, p] + p^k*T[n-1, k, q]]; Table[T[n, k, 25], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2021 *)
PROG
(Sage) flatten([[q_binomial(n, k, 5^2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2021
(Magma) q:=5;; [q^(k*(n-k))*GaussianBinomial(n, k, q): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 22 2021
CROSSREFS
Cf. A000012 (q=0), A007318 (q=1), A022168 (q=2), A022173 (q=3), A022180 (q=4), A173583 (q=5).
Sequence in context: A225483 A183065 A157630 * A040687 A040688 A040686
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 22 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 22 2021
STATUS
approved