login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225184
Primes p with a primitive root that divides p+1.
3
2, 3, 5, 11, 13, 17, 19, 29, 37, 41, 53, 59, 61, 67, 83, 89, 97, 101, 107, 109, 113, 131, 137, 139, 149, 163, 173, 179, 181, 197, 211, 227, 229, 233, 251, 257, 269, 281, 293, 307, 317, 347, 349, 353, 373, 379, 389, 401, 419, 421, 433, 443, 449, 461, 467, 491, 499, 509, 521, 523, 541, 547, 557, 563, 569, 587, 593, 601
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Arto Lepistö, Francesco Pappalardi and Kalle Saari, Transposition Invariant Words, Theoret. Comput. Sci., Vol. 380, No. 3 (2007), pp. 377-387.
EXAMPLE
The primitive roots modulo 97 are 5, 7, 10, 13, 14, 15, 17, 21, 23, 26, 29, 37, 38, 39, ..., and 7 divides 98, so 97 is a member of this sequence.
PROG
(PARI) forprime(p=2, 1000, i=0; fordiv(p+1, X, if(znorder(Mod(X, p))==eulerphi(p), i=1)); if(i==1, print1(p", "))) \\ V. Raman, May 04 2013
(Magma) [p: p in PrimesUpTo(700) | exists{r: r in [1..p-1] | IsPrimitive(r, p) and IsZero((p+1) mod r)}]; // Bruno Berselli, May 10 2013
CROSSREFS
Cf. A060749, A225185 (complement). A001122 is a subsequence.
Sequence in context: A091317 A088254 A089191 * A038947 A095315 A221717
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 04 2013
EXTENSIONS
More terms from V. Raman, May 04 2013
STATUS
approved