login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095315
Primes in whose binary expansion the number of 1 bits is <= 2 + number of 0 bits.
5
2, 3, 5, 11, 13, 17, 19, 37, 41, 43, 53, 67, 71, 73, 83, 89, 97, 101, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 193, 197, 199, 211, 227, 229, 233, 241, 257, 263, 269, 271, 277, 281, 283, 293, 307, 313, 331, 337, 353, 389, 397
OFFSET
1,1
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..25000 (terms 1..1000 from Harvey P. Dale)
EXAMPLE
13 is in the sequence because 13 = 1101_2. '1101' has three 1's and one 0. 3 = 2 + 1. - Indranil Ghosh, Feb 07 2017
MATHEMATICA
Select[Prime[Range[100]], DigitCount[#, 2, 1]<3+DigitCount[#, 2, 0]&] (* Harvey P. Dale, Aug 12 2016 *)
PROG
(PARI) B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0;
for(i = 0, nB, if(bittest(x, i), b1++; , b0++; ); );
if(b1 <= (2+b0), return(1); , return(0); ); };
forprime(x = 2, 397, if(B(x), print1(x, ", "); ); );
\\ Washington Bomfim, Jan 12 2011
(Python)
i=j=1
while j<=250:
if isprime(i) and bin(i)[2:].count("1")<=2+bin(i)[2:].count("0"):
print(str(j)+" "+str(i))
j+=1
i+=1 # Indranil Ghosh, Feb 07 2017
CROSSREFS
Complement of A095314 in A000040. Subset: A095287. Subset of A095319. Cf. also A095335.
Sequence in context: A089191 A225184 A038947 * A221717 A140558 A040044
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Jun 04 2004
STATUS
approved