login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes in whose binary expansion the number of 1 bits is <= 2 + number of 0 bits.
5

%I #24 May 01 2021 02:10:10

%S 2,3,5,11,13,17,19,37,41,43,53,67,71,73,83,89,97,101,113,131,137,139,

%T 149,151,157,163,167,173,179,181,193,197,199,211,227,229,233,241,257,

%U 263,269,271,277,281,283,293,307,313,331,337,353,389,397

%N Primes in whose binary expansion the number of 1 bits is <= 2 + number of 0 bits.

%H Indranil Ghosh, <a href="/A095315/b095315.txt">Table of n, a(n) for n = 1..25000</a> (terms 1..1000 from Harvey P. Dale)

%H Antti Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C program for computing the initial terms of this sequence</a>

%e 13 is in the sequence because 13 = 1101_2. '1101' has three 1's and one 0. 3 = 2 + 1. - _Indranil Ghosh_, Feb 07 2017

%t Select[Prime[Range[100]],DigitCount[#,2,1]<3+DigitCount[#,2,0]&] (* _Harvey P. Dale_, Aug 12 2016 *)

%o (PARI) B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0;

%o for(i = 0, nB, if(bittest(x,i), b1++;, b0++;); );

%o if(b1 <= (2+b0), return(1);, return(0););};

%o forprime(x = 2, 397, if(B(x), print1(x, ", "); ); );

%o \\ _Washington Bomfim_, Jan 12 2011

%o (Python)

%o i=j=1

%o while j<=250:

%o if isprime(i) and bin(i)[2:].count("1")<=2+bin(i)[2:].count("0"):

%o print(str(j)+" "+str(i))

%o j+=1

%o i+=1 # _Indranil Ghosh_, Feb 07 2017

%Y Complement of A095314 in A000040. Subset: A095287. Subset of A095319. Cf. also A095335.

%K nonn,easy

%O 1,1

%A _Antti Karttunen_, Jun 04 2004