The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225183 Sequence defined by a mix-DFAO: Example 8 of Endrullis et al. (2013), written over the alphabet {0,1}. 2
 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS From Dimitri Hendriks, Jun 29 2013: (Start) The sequence is obtained as the solution of the variable S in the following set of recursive equations:   S = 0 : X   X = 1 : zip_2(X,Y)   Y = 0 : 1 : zip_3(Z,X,Y)   Z = 0 : zip_2(Y,X) Here, for sequences a = a_0, a_1, a_2, .... and b = b_0, b_1, b_2, ..., the term zip_2(A,B) denotes their perfect shuffle, i.e., zip_2(a,b) = a_0, b_0, a_1, b_1, a_2, b_2, .... Likewise zip_3(a,b,c) = a_0, b_0, c_0, a_1, b_1, c_1, ... . The colon denotes concatenation of a letter to a sequence, e.g., 0 : a denotes the sequence 0, a_0, a_1, a_2, ... . The sequence is produced by rewriting the equations from left to right, ad infinitum: S = 0:X = 0:1:zip_2(X,Y) = 0:1:zip_2(1:zip_2(X,Y),Y) = 0:1:1:zip_2(Y,zip_2(X,Y)) = 0:1:1:zip_2(0:1:zip_3(Z,X,Y),zip_2(X,Y)) = 0:1:1:0:zip_2(zip_2(X,Y),1:zip_3(Z,X,Y)) = 0:1:1:0:zip_2(zip_2(1:zip_2(X,Y),Y),1:zip_3(Z,X,Y)) = 0:1:1:0:zip_2(1:zip_2(zip_2(Y,X),Y),1:zip_3(Z,X,Y)) = 0:1:1:0:1:zip_2(1:zip_3(Z,X,Y),zip_2(zip_2(Y,X),Y)) = 0:1:1:0:1:1:zip_2(zip_2(zip_2(Y,X),Y),zip_3(Z,X,Y)) = ... Equivalently, the sequence is produced by a so-called mix-DFAO (deterministic finite state automaton with output); see further the LATA 2013 paper by Endrullis, Grabmayer, Hendriks, Example 8, page 268. (End) LINKS J. Endrullis, C. Grabmayer, D. Hendriks, Mix-Automatic Sequences, In: Proceedings Conference on Language and Automata Theory and Applications (LATA 2013), Springer, 2013, pages 262-274. PROG (Haskell) zipl :: [[x]] -> [x] zipl (s:ss) = head s : zipl (ss ++ [(tail s)]) a225183 = s where   s = 0 : x   x = 1 : zipl [x, y]   y = 0 : 1 : zipl [z, x, y]   z = 0 : zipl [y, x] -- Dimitri Hendriks, Jun 29 2013 CROSSREFS Cf. A225182. Sequence in context: A322829 A286400 A288478 * A082410 A189479 A260394 Adjacent sequences:  A225180 A225181 A225182 * A225184 A225185 A225186 KEYWORD nonn AUTHOR N. J. A. Sloane, May 03 2013 EXTENSIONS Added more terms, Dimitri Hendriks, Jun 29 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 00:16 EDT 2021. Contains 345154 sequences. (Running on oeis4.)