%I
%S 2,3,5,11,13,17,19,29,37,41,53,59,61,67,83,89,97,101,107,109,113,131,
%T 137,139,149,163,173,179,181,197,211,227,229,233,251,257,269,281,293,
%U 307,317,347,349,353,373,379,389,401,419,421,433,443,449,461,467,491,499,509,521,523,541,547,557,563,569,587,593,601
%N Primes p with a primitive root that divides p+1.
%D Arto LepistÃ¶, Francesco Pappalardi and Kalle Saari. Transposition Invariant Words. Theoret. Comput. Sci., 380(3), 377387, 2007; doi: 10.1016/j.tcs.2007.03.029
%H Charles R Greathouse IV, <a href="/A225184/b225184.txt">Table of n, a(n) for n = 1..10000</a>
%e The primitive roots modulo 97 are 5, 7, 10, 13, 14, 15, 17, 21, 23, 26, 29, 37, 38, 39, ..., and 7 divides 98, so 97 is a member of this sequence.
%o (PARI) forprime(p=2,1000, i=0; fordiv(p+1,X, if(znorder(Mod(X,p))==eulerphi(p), i=1)); if(i==1,print1(p", "))) \\ _V. Raman_, May 04 2013
%o (MAGMA) [p: p in PrimesUpTo(700)  exists{r: r in [1..p1]  IsPrimitive(r,p) and IsZero((p+1) mod r)}]; // _Bruno Berselli_, May 10 2013
%Y Cf. A060749, A225185 (complement). A001122 is a subsequence.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, May 04 2013
%E More terms from _V. Raman_, May 04 2013
