login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220420
Express the Sum_{n>=0} p(n)*x^n, where p(n) is the partition function, as a product Product_{k>=1} (1 + a(k)*x^k).
6
1, 2, 1, 4, 1, 0, 1, 14, 1, -4, 1, -8, 1, -16, 1, 196, 1, -54, 1, -92, 1, -184, 1, 144, 1, -628, 1, -1040, 1, -2160, 1, 41102, 1, -7708, 1, -12932, 1, -27592, 1, 54020, 1, -98496, 1, -173720, 1, -364720, 1, 853624, 1, -1341970, 1, -2383916, 1, -4918536, 1
OFFSET
1,2
COMMENTS
This is the PPE (power product expansion) of A000041.
When n is odd, a(n) = 1.
When n is even, a(n) = 2, 4, 0, 14, -4, -8, -16, 196, -54, -92, -184, 144, -628, -1040, -2160, 41102, ...
Alkauskas (2016, Problem 3, p. 3) conjectured that a(8*k+2), a(8*k+4), and a(8*k+6) are all negative, and a(8*k) is positive for k >= 1. [This statement is not wholly true for k = 0.] - Petros Hadjicostas, Oct 07 2019
LINKS
Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canadian Journal of Mathematics 47(6) (1995), 1219-1239.
FORMULA
From Petros Hadjicostas, Oct 04 2019: (Start)
Define (A(m,n): n,m >= 1) by A(m=1,n) = p(n) = A000041(n) for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
a(n) = Sum_{s|n} s/n + Sum_{s|n, s > 1} (-a(n/s))^s/s. [Eq. (1) in Alkauskas (2008, 2009).]
(End)
MATHEMATICA
terms = 55; sol[0] = {};
sol[m_] := sol[m] = Join[sol[m - 1], If[OddQ[m], {a[m] -> 1}, First @ Solve[Thread[Table[PartitionsP[n], {n, 0, m}] == CoefficientList[ (Product[1 + a[n]*x^n, {n, 1, m}] /. sol[m - 1]) + O[x]^(m + 1), x]]]]];
Array[a, terms] /. sol[terms] (* Jean-François Alcover, Dec 06 2018, corrected Oct 03 2019 *)
(* Second program: *)
A[m_, n_] := A[m, n] = Which[m == 1, PartitionsP[n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1] ];
a[n_] := A[n, n];
a /@ Range[1, 55] (* Jean-François Alcover, Oct 03 2019, using the formula given by Petros Hadjicostas *)
PROG
(PARI) a(m) = {default(seriesprecision, m+1); ak = vector(m); pol = 1 / eta(x + x * O(x^m)); ak[1] = polcoeff(pol, 1); for (k=2, m, pol = taylor(pol / (1+ak[k-1]*x^(k-1)), x); ak[k] = polcoeff(pol, k, x); ); for (k=1, m, print1(ak[k], ", "); ); }
KEYWORD
sign
AUTHOR
Michel Marcus, Dec 14 2012
STATUS
approved