login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219790
Smallest prime not neighboring a prime(n)-smooth number.
1
11, 29, 43, 67, 103, 137, 173, 173, 173, 283, 283, 283, 283, 283, 317, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 787, 787, 787, 907, 907, 907, 907, 1433, 1433, 1433, 1433, 1433, 1447, 1543, 1543, 1867, 1867, 1867, 1867, 1867, 1867
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) > 6p for n > 1, where p is the n-th prime. - Charles R Greathouse IV, Nov 28 2012
EXAMPLE
a(2) = 29, the smallest prime not neighboring a 3-smooth number, since 3 is the 2nd prime; i.e., not of the form 2^j*3^k +/- 1. 43-1 = 2*3*7, 43+1 = 2*2*11, so neither are 5-smooth.
a(3) = 43, the smallest prime not neighboring a 5-smooth number, since 5 is the 3rd prime, and 43-1 = 42 = 2 * 3 * 7 is not 5 smooth, and 43+1 = 44 = 2^2 * 11 is not 5 smooth. - corrected by Jason Kimberley, Nov 29 2012
a(4) = 67, the smallest prime not neighboring a 7-smooth number, since 7 is the 4th prime, and 67-1 = 66 = 2 * 3 * 11 is not 7 smooth, and 67+1 = 68 = 2^2 * 17 is not 7 smooth. - corrected by Jason Kimberley, Nov 29 2012
a(5) = 103, the smallest prime not neighboring a 11-smooth number, since 11 is the 5th prime, and 103-1 = 102 = 2 * 3 * 17 is not 11 smooth, and 103+1 = 104 = 2^3 * 13 is not 11 smooth.
a(6) = 137, the smallest prime not neighboring a 13-smooth number, since 13 is the 6th prime, and 137-1 = 136 = 2^3 * 17 is not 13 smooth, and 137+1 = 138 = 2 * 3 * 23 is not 13 smooth.
PROG
(PARI) a(n)=my(p=prime(n)); forprime(q=6*p-1, , if(vecmax(factor(q-1)[, 1])>p && vecmax(factor(q+1)[, 1])>p, return(q))) \\ Charles R Greathouse IV, Nov 28 2012
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Nov 27 2012
EXTENSIONS
a(3) and a(4) corrected by Charles R Greathouse IV, Nov 28 2012
a(1) and a(7)-a(53) from Charles R Greathouse IV, Nov 28 2012
STATUS
approved