The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219642 Number of steps to reach 0 starting with n and using the iterated process: x -> x - (number of 1's in Zeckendorf expansion of x). 12
 0, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 29 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See A014417 for the Fibonacci number system representation, also known as Zeckendorf expansion. LINKS A. Karttunen, Table of n, a(n) for n = 0..10946 FORMULA a(0)=0; for n>0, a(n) = 1+a(A219641(n)). PROG (Scheme with memoization macro definec from Antti Karttunen's Intseq-library): (definec (A219642 n) (if (zero? n) n (+ 1 (A219642 (A219641 n))))) (PARI) A007895(n)=if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s) a(n)=my(s); while(n, n-=A007895(n); s++); s \\ Charles R Greathouse IV, Sep 02 2015 (Python) from sympy import fibonacci def a007895(n): k=0 x=0 while n>0: k=0 while fibonacci(k)<=n: k+=1 x+=10**(k - 3) n-=fibonacci(k - 1) return str(x).count("1") def a219641(n): return n - a007895(n) l=[0] for n in range(1, 101): l.append(1 + l[a219641(n)]) print(l) # Indranil Ghosh, Jun 09 2017 CROSSREFS Cf. A007895, A014417, A219640, A219641, A219643-A219645, A219648. Analogous sequence for binary system: A071542, for factorial number system: A219652. Sequence in context: A229790 A156261 A071823 * A139338 A244229 A317596 Adjacent sequences: A219639 A219640 A219641 * A219643 A219644 A219645 KEYWORD nonn AUTHOR Antti Karttunen, Nov 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 21:32 EDT 2024. Contains 375073 sequences. (Running on oeis4.)