login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of steps to reach 0 starting with n and using the iterated process: x -> x - (number of 1's in Zeckendorf expansion of x).
12

%I #22 Mar 09 2021 19:13:58

%S 0,1,2,3,3,4,4,5,6,6,7,7,7,8,8,9,9,9,10,10,10,11,11,12,12,12,13,13,13,

%T 14,14,14,15,15,16,16,17,17,17,18,18,18,19,19,19,20,20,21,21,21,22,22,

%U 22,22,23,24,24,25,25,25,26,26,26,27,27,27,28,28,29,29

%N Number of steps to reach 0 starting with n and using the iterated process: x -> x - (number of 1's in Zeckendorf expansion of x).

%C See A014417 for the Fibonacci number system representation, also known as Zeckendorf expansion.

%H A. Karttunen, <a href="/A219642/b219642.txt">Table of n, a(n) for n = 0..10946</a>

%F a(0)=0; for n>0, a(n) = 1+a(A219641(n)).

%o (Scheme with memoization macro definec from _Antti Karttunen_'s Intseq-library):

%o (definec (A219642 n) (if (zero? n) n (+ 1 (A219642 (A219641 n)))))

%o (PARI) A007895(n)=if(n<4, n>0, my(k=2,s,t); while(fibonacci(k++)<=n,); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s)

%o a(n)=my(s); while(n, n-=A007895(n); s++); s \\ _Charles R Greathouse IV_, Sep 02 2015

%o (Python)

%o from sympy import fibonacci

%o def a007895(n):

%o k=0

%o x=0

%o while n>0:

%o k=0

%o while fibonacci(k)<=n: k+=1

%o x+=10**(k - 3)

%o n-=fibonacci(k - 1)

%o return str(x).count("1")

%o def a219641(n): return n - a007895(n)

%o l=[0]

%o for n in range(1, 101):

%o l.append(1 + l[a219641(n)])

%o print(l) # _Indranil Ghosh_, Jun 09 2017

%Y Cf. A007895, A014417, A219640, A219641, A219643-A219645, A219648. Analogous sequence for binary system: A071542, for factorial number system: A219652.

%K nonn

%O 0,3

%A _Antti Karttunen_, Nov 24 2012