

A229790


Cube roots of difference of consecutive cubes, rounded.


0



1, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS



EXAMPLE

3n^2+3n+1 is the difference of two adjacent cubes, taking the cube root and rounding to a whole number yields an element of the series. 3 cubes is 27, inserting 3 into the formula = 37, 37 plus 27 is 64 the next cube after 27; the cube root of 37 is 3.33222... rounded to 3 is the element in the series.


MATHEMATICA

Table[Round[(3*n^2 + 3*n + 1)^(1/3)], {n, 0, 100}] (* T. D. Noe, Oct 22 2013 *)
Round[Surd[#, 3]]&/@Differences[Range[0, 70]^3] (* Harvey P. Dale, Aug 01 2020 *)


PROG



CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



