login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218979
Numbers n such that some sum of n consecutive positive cubes is a square.
2
1, 3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 25, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 76, 77, 79, 81, 82, 83, 85, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99
OFFSET
1,2
COMMENTS
The trivial solutions with x = 0 and x = 1 are not considered here.
Numbers n such that x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 has nontrivial solutions over the integers.
The nontrivial solutions are found by solving Y^2 = X^3 + d(n)*X with d(n) = n^2*(n^2-1)/4 (A006011), Y = n*y and X = n*x + (1/2)*n*(n-1). [Corrected by Derek Orr, Aug 30 2014]
x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 can also be written as y^2 = n(x + (n-1)/2)(n(x + (n-1)/2) + x(x-1)). - Vladimir Pletser, Aug 30 2014
There are 892 triples (n,x,y), with n and x less than 10^5 (1 < n,x < 10^5), which are nontrivial solutions of x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 (note that (n,x,y) corresponds to (M,a,c) in A253679, A253680, A253681, A253707, A253708, A253709, A253724, A253725). - Vladimir Pletser, Jan 10 2015
EXAMPLE
See "Examples of triples" link.
PROG
(PARI)
a(n)=for(x=2, 10^7, /* note this limit only generates the terms in the data section */ X = n*x + (1/2)*n*(n-1); d=n^2*(n^2-1)/4; if(issquare(X^3+d*X), return(x)))
n=1; while(n<100, if(a(n), print1(n, ", ")); n++) \\ Derek Orr, Aug 30 2014
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 08 2012
EXTENSIONS
Name changed, a(1) = 1 prepended and a(39)-a(68) from Derek Orr, Aug 30 2014
More terms for 50<n<10^5 and 1<x<10^5 from Vladimir Pletser, Jan 10 2015
STATUS
approved