login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216788
a(n) = Product_{k=1..n} (169 - 13/k).
0
1, 156, 25350, 4174300, 691890225, 115130533440, 19207610662240, 3210414924974400, 537343198067590200, 90034838076214002400, 15098842345381088202480, 2533860269961226256525280, 425477370330989242241536600, 71480198215606192696578148800
OFFSET
0,2
COMMENTS
This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).
MAPLE
seq(product(169-13/k, k=1.. n), n=0..20);
seq((13^n/n!)*product(13*k+12, k=0.. n-1), n=0..20);
MATHEMATICA
Table[Product[169-13/k, {k, n}], {n, 0, 20}] (* Harvey P. Dale, Mar 13 2013 *)
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 16 2012
STATUS
approved