login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216787
a(n) = Product_{k=1..n} (144 - 12/k).
1
1, 132, 18216, 2550240, 359583840, 50917071744, 7230224187648, 1028757612985344, 146597959850411520, 20914642271992043520, 2986610916440463814656, 426813850967673556058112, 61034380688377318516310016, 8732611390798600956948971520, 1250010944797171165551838494720
OFFSET
0,2
COMMENTS
This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).
MAPLE
seq(product(144-12/k, k=1.. n), n=0..20);
seq((12^n/n!)*product(12*k+11, k=0.. n-1), n=0..20);
MATHEMATICA
Join[{1}, FoldList[Times, 144-12/Range[20]]] (* Harvey P. Dale, Dec 22 2015 *)
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 16 2012
STATUS
approved