login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216786
a(n) = Product_{k=1..n} (121 - 11/k).
3
1, 110, 12705, 1490720, 176277640, 20941783632, 2495562549480, 298041470195040, 35653210872081660, 4270462368900447720, 512028438031163681628, 61443412563739641795360, 7378329792029068652259480, 886534702703800402679177520, 106574136046464005550646840440
OFFSET
0,2
COMMENTS
This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).
MAPLE
seq(product(121-11/k, k=1.. n), n=0..20);
seq((11^n/n!)*product(11*k+10, k=0.. n-1), n=0..20);
A216786 := proc(n)
binomial(-10/11, n)*(-121)^n ;
end proc: # R. J. Mathar, Sep 17 2012
MATHEMATICA
Join[{1}, FoldList[Times, 121-11/Range[20]]] (* Harvey P. Dale, Mar 15 2016 *)
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 16 2012
STATUS
approved