login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A006112
Gaussian binomial coefficient [ n,3 ] for q = 5.
(Formerly M5404)
2
1, 156, 20306, 2558556, 320327931, 40053706056, 5007031143556, 625886840206056, 78236053707784181, 9779511680526143556, 1222439084242108174806, 152804888634672088643556, 19100611156944225555440431, 2387576396558283557830831056
OFFSET
3,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
G.f.: x^3/((1-x)*(1-5*x)*(1-25*x)*(1-125*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..3} (5^(n-i+1)-1)/(5^i-1), by definition. - Vincenzo Librandi, Aug 07 2016
a(n) = (5^n-1)*(5^n-5)*(5^n-25)/1488000. - Robert Israel, Feb 01 2018
MAPLE
A006112:=1/(z-1)/(125*z-1)/(25*z-1)/(5*z-1); # [conjectured by Simon Plouffe in his 1992 dissertation]
seq((5^n-1)*(5^n-5)*(5^n-25)/1488000, n=3..30); # Robert Israel, Feb 01 2018
MATHEMATICA
Table[QBinomial[n, 3, 5], {n, 3, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
PROG
(Sage) [gaussian_binomial(n, 3, 5) for n in range(3, 14)] # Zerinvary Lajos, May 27 2009
(Magma) r:=3; q:=5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
CROSSREFS
Sequence in context: A035838 A035824 A252778 * A239410 A216788 A239338
KEYWORD
nonn,easy
STATUS
approved