login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006111
Gaussian binomial coefficient [ n,2 ] for q=5.
(Formerly M5228)
2
1, 31, 806, 20306, 508431, 12714681, 317886556, 7947261556, 198682027181, 4967053120931, 124176340230306, 3104408566792806, 77610214474995931, 1940255363400777181, 48506384092648824056, 1212659602354367574056, 30316490059049924214681
OFFSET
2,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
G.f.: x^2/[(1-x)(1-5x)(1-25x)].
a(n) = 6*a(n-1) - 5*a(n-2) + 25^(n-2), n>=4. - Vincenzo Librandi, Mar 20 2011
a(n) = 30*a(n-1) - 125*a(n-2) + 1, n>=3. - Vincenzo Librandi, Mar 20 2011
a(n) = -5^(n-1)/16 + 25^n/480 + 1/96. - R. J. Mathar, Mar 21 2011
MAPLE
A006111:=-1/(z-1)/(25*z-1)/(5*z-1); # [Simon Plouffe in his 1992 dissertation with offset 0]
MATHEMATICA
Transpose[NestList[Flatten[{Last[#], 30Last[#]- 125First[#]+1}]&, {1, 31}, 20]] [[1]] (* Harvey P. Dale, Mar 26 2011 *)
LinearRecurrence[{31, -155, 125}, {1, 31, 806}, 10] (* T. D. Noe, Mar 26 2011 *)
PROG
(Sage) [gaussian_binomial(n, 2, 5) for n in range(2, 16)] # Zerinvary Lajos, May 28 2009
CROSSREFS
Sequence in context: A166488 A051587 A069380 * A183828 A180847 A202977
KEYWORD
nonn
EXTENSIONS
More terms from Harvey P. Dale, Mar 26 2011
STATUS
approved