OFFSET
1,2
COMMENTS
Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). The order of the list:
T(1,1)=1;
T(1,3), T(2,2), T(2,1), T(1,2), T(3,1);
. . .
T(1,2*n+1), T(2,2*n), T(2,2*n-1), T(1,2*n), ...T(2*n-1,3), T(2*n,2), T(2*n,1), T(2*n-1,2), T(2*n+1,1);
. . .
Movement along two adjacent antidiagonals - step to the southwest, step to the west, step to the northeast, 2 steps to the south, step to the west and so on. The length of each step is 1.
Table contains:
row 1 accommodates elements A130883 in odd places,
column 3 accommodates elements A130861 in even places;
diagonal 1, located above the main diagonal accommodates elements A033566 in even places,
diagonal 3, located above the main diagonal accommodates of elements A033585.
LINKS
Boris Putievskiy, Rows n = 1..140 of triangle, flattened
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Eric Weisstein's World of Mathematics, Pairing functions
FORMULA
As table
T(n,k) = ((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2.
As linear sequence
a(n) = (A003057(n)^2-4*A004736(n)+3+(-1)^A004736(n)-2*(-1)^A002260(n)-A003057(n)*(-1)^A003056(n))/2;
a(n) = ((t+2)^2-4*j+3+(-1)^j-2*(-1)^i-(t+2)*(-1)^t)/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
EXAMPLE
The start of the sequence as table:
1....5...2..10...7..19..16...
4....3...9...8..18..17..31...
6...14..11..23..20..36..33...
13..12..22..21..35..34..52...
15..27..24..40..37..57..54...
26..25..39..38..56..55..77...
28..44..41..61..58..82..79...
. . .
The start of the sequence as triangle array read by rows:
1;
5,4;
2,3,6;
10,9,14,13;
7,8,11,12,15;
19,18,23,22,27,26;
16,17,20,21,24,25,28;
. . .
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last 2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
1;
5,4,2,3,6;
10,9,14,13,7,8,11,12,15;
19,18,23,22,27,26,16,17,20,21,24,25,28;
. . .
Row number r contains permutation 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+7, 2*r*r-5*r+6,...2*r*r-r-4, 2*r*r-r-3, 2*r*r-r.
MAPLE
T:=(n, k)->((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2: seq(seq(T(k, n-k), k=1..n-1), n=1..13); # Muniru A Asiru, Dec 06 2018
MATHEMATICA
T[n_, k_] := ((n+k)^2 - 4k + 3 + (-1)^k - 2(-1)^n - (n+k)(-1)^(n+k))/2;
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result=((t+2)**2-4*j+3+(-1)**j-2*(-1)**i-(t+2)*(-1)**t)/2
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Feb 15 2013
STATUS
approved