login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213208
Number of distinct products i*j*k over all triples (i,j,k) with |i| + |j| + |k| <= n and gcd(i,j,k) <= 1.
10
1, 1, 1, 3, 5, 9, 11, 19, 23, 33, 39, 51, 57, 75, 87, 103, 117, 143, 155, 187, 207, 235, 259, 297, 319, 363, 395, 441, 473, 525, 555, 615, 659, 721, 765, 831, 875, 959, 1017, 1091, 1147, 1239, 1291, 1397, 1467, 1553, 1631, 1743, 1813, 1937, 2023, 2141, 2233, 2379, 2465
OFFSET
0,4
COMMENTS
This sequence is in reply to an extension request made in A100450.
Note that gcd(0,m) = m for any m.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..100 from Robert Price)
MAPLE
h:= proc() true end:
b:= proc(n) local c, i, j, p;
c:=0;
for i to iquo(n, 3) do
for j from i to iquo(n-i, 2) do
if igcd(i, j, n-i-j)=1 then p:= i*j*(n-i-j);
if h(p) then h(p):= false; c:=c+1 fi
fi
od
od; c
end:
a:= proc(n) a(n):= `if`(n=0, 1, a(n-1) +2*b(n)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 01 2013
MATHEMATICA
f[n_] := Length[ Union[ Flatten[ Table[ If[ Abs[i] + Abs[j] + Abs[k] <= n&& GCD[i, j, k] <= 1, i*j*k, 0], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]]]; Table[ f[n], {n, 0, 100}]
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 01 2013
STATUS
approved